焦仁杰,博士,广州霍夫曼免疫研究所所长,二级教授,博士生导师,国家重点研发计划项目首席科学家。111天然免疫机理研究创新引智基地负责人。国家果蝇资源中心主任/理事长。免疫学学科带头人。1965年1月生于江苏泰兴。1987年毕业于北京大学生物学系细胞生物学专业,获学士学位。1991年获北京大学细胞生物学硕士学位。同年留校任教。历任助教、讲师。1999年获苏黎世大学分子生物学研究所分子遗传与发育生物学博士学位。2004年受聘于中国科学院生物物理研究所,任课题组长/研究员/PI(Principal Investigator)。2017年受聘于广州医科大学,任教授/PI、研究所所长。曾获国家自然科学奖三等奖、中国科学院优秀导师等奖励。现任《Journal of Genetics and Genomics》副主编;英国癌症研究基金会(Cancer Research UK)、奥地利国家自然科学基金(Austrian National Science Foundation)等基金评审人;科学探索奖(Xplorer Prize)、澳门科技奖等科技奖励委员会评审专家;«Nature Communications»、«Development»、«Journal of Cell Science»、«Journal of Molecular Cell Biology»、«Theranostics»等科技期刊论文评阅人。至今已在Nat. Cell Biol., Immunity, Nat. Commun., Dev. Cell, PNAS, Cell Res., EMBOJ, Cancer Res., Development, EMBO Reports, J Neurosci., J Cell Sci., Genetics 等专业期刊上发表研究论文八十多篇。
实验室目前的AIM(Aging - Immunity - Metabolism)是以果蝇为研究对象,以果蝇天然免疫的调节机制为中心问题,研究细胞信号转导、细胞代谢、神经活动、机体衰老如何参与调节果蝇天然免疫应答。分子生物学、遗传学、细胞生物学(光镜与电镜水平)、免疫学、高通量组学(单细胞组学、代谢组学、蛋白质组学)相关技术是我们研究中最常用的实验方法。
实验室对生物学过程的内在机理感兴趣,特别是系统性调节:比如神经系统如何调节免疫系统或者反之;代谢如何调节免疫或者反之。不同组织细胞如何交流、合作:比如神经细胞跟免疫细胞合作;脂肪细胞跟免疫细胞合作。机体在应激状态下如何协调个生物学过程的合作以及各组织细胞之间的合作等等。
实验室利用大规模遗传学筛选获得一批参与果蝇免疫调控的候选基因以及一些与重要人类疾病相关的基因。这些基因功能的解析将会有效在系统水平阐明果蝇天然免疫的调节过程的分子机理。这些基因和参与的调节过程在哺乳动物(包括人)存在很高程度的保守性,所以我们的研究也可能为人类免疫相关疾病的发生与诊治提供重要的知识积累。
除此以外,实验室也致力于一些关键人类疾病的果蝇模型的建立与应用研究。
招生联系方式:rjiao@gzhmu.edu.cn 联系人:焦仁杰
近年发表代表性论文:
1. Wang L., C. Liu, L. Li, H. Wei, W. Wei, Q. Zhou, Y. Chen, T. Meng, R. Jiao, Z. Wang*, Q. Sun*, W. Li*. 2024. RNF20 Regulates Oocyte Meiotic Spindle Assembly by Recruiting TPM3 to Centromeres and Spindle Poles. Adv Sci (Weinh), e2306986.
2. Cai H.*, L. Li, K. M. Slavik, J. Huang, T. Yin, X. Ai, L. Hedelin, G. Haas, Z. Xiang, Y. Yang, X. Li, Y. Chen, Z. Wei, H. Deng, D. Chen, R. Jiao, N. Martins, C. Meignin, P. J. Kranzusch* and J.-L. Imler. 2023. The virus-induced cyclic dinucleotide 2030-c-di-GMP mediates STING-dependent antiviral immunity in Drosophila. Immunity, 56: 1-15.
3. Xie W., C. Zhang, Z. Wang, H. Chen, T. Gu, T. Zhou, Y. Wu, F. Xia, M. Li, J. Wang, R. Jiao, J. Cui and S. Jin*. 2023. ATG4B antagonizes antiviral immunity by GABARAP-directed autophagic degradation of TBK1. AUTOPHAGY, 19(11):2853-2868.
4. Deng Z., H. Chen, L. Xiao, H. Jin, Q. Zhang, R. Jiao*, C. Wei*. 2023. Gain of Function Screen of PATs Reveals an Essential Role of Hip14 in Drosophila Host Defense. J. Genet. Genomics, 50(12):1014-1017.
5. Xu R., F. Dai, H. Wu, R. Jiao, F. He* and J. Ma*. 2023. Shaping the scaling characteristics of gap gene expression patterns in Drosophila. Heliyon, 9(2): e13623.
6. Huang J., Y. Lou, J. Liu, P. Bulet, C. Cai, K. Ma, R. Jiao, J. A. Hoffmann, S. Liégeois, Z. Li and D. Ferrandon*. 2023. A Toll pathway effector protects Drosophila specifically from distinct toxins secreted by a fungus or a bacterium. PNAS, 120(12):e2205140120.
7. Huang Z., W. Wang, P. Xu, S. Gong, Y. Hu, Y. Liu, F. Su, K. M. Anjum, W.-M. Deng, S. Yang, J. Liu*, R. Jiao* and J. Chen*. 2023. Drosophila Ectoderm-expressed 4 modulates JAK/STAT pathway and protects flies against Drosophila C virus infection. Frontiers in Immunology, 14: 1135625.
8. Wu H.*, N. Zhu, J. Liu, J. Ma and R. Jiao*. 2022. Shaggy regulates tissue growth through Hippo pathway in Drosophila. Science China Life Sciences, 65 : 2131–2144.
9. Deng Z., Y. Yang, J. Luo, B. Zhang, J. Liu, G. Shui, R. Jiao*, C. Wei*. 2022. An integrated transcriptomics and lipidomics analysis reveals that ergosterol is required for host defense against bacterial infection in Drosophila. Frontiers in Immunology, 13: 933137.
10. Pan Y., W. Li, Z. Deng, Y. Sun, X. Ma, R. Liang, X. Guo, Y. Sun, W. Li, R. Jiao, L. Xue. 2022. Myc suppresses male–male courtship in Drosophila. The EMBO J., e109905.
11. Wang J., J. Huang, Y.-Q. Li, S. Yao, C.-H. Wu, Y. Wang, F. Gao, M.-D. Xu, G.-B. Huang, C.-Q. Zhao, J.-H. Wu, Y.-L. Zhang, R. Jiao, Z.-H. Deng, W. Jie, H.-B. Li, A. Xuan, X.-D. Sun. 2021. Neuregulin 1/ErbB4 signaling contributes to the anti-epileptic effects of the ketogenic diet. Cell and Bioscience, 11: 29.
12. Bi Y., Y. Chang, Q. Liu, Y. Mao, K. Zhai, Y. Zhou, R. Jiao*, G. Ji. 2021. ERp44/CG9911 promotes fat storage in Drosophila adipocytes by regulating ER Ca2+ homeostasis. Aging, 13: 15013-15031.
13. Wei C., C.-W. Phang and R. Jiao*. 2020. Epigenetic regulation of Notch signaling during Drosophila development. Adv Exp Med Biol, 1218: 59–76.
14. Wei C., Y. Yan, X. Miao and R. Jiao*. 2019. Dissection and Lipid Droplets Staining of the Oenocytes in Drosophila Larvae. Journal of Visualized Experiments (JoVE), e60606.
15. Yan Y., H. Wang, C. Wei, Y. Xiang, X. Liang, C. W. Phanga and R. Jiao*. 2019. HDAC6 regulates lipid droplet turnover in response to nutrient deprivation via p62-mediated selective autophagy. J. Genet. Genomics, 46: 221 – 229.
16. Lo, P.-K., Y.-C. Huang, D. Corcoran, R. Jiao and W.-M. Deng. 2019. Drosophila chromatin assembly factor 1 p105 and p180 subunits are required for follicle cell proliferation via inhibiting Notch signaling. J. Cell Sci., 132: doi:10.1242/jcs.224170.
17. Chen, J., N. Xu, C. Wang, P. Huang, H. Huang, Z. Jin, Z. Yu, T. Cai, R. Jiao and R. Xi. 2018. Transient Scute activation via a self-stimulatory loop directs enteroendocrine cell pair specification from self-renewing intestinal stem cells. Nature Cell Biol., 20(2): 152-161.
18. Yan, Y., H. Wang, M. Hu, L. Jiang, Y. Wang, P. Liu, X. Liang, J. Liu, C. Li, A. Lindström-Battle, W.-M. Deng and R. Jiao*. 2017. HDAC6 suppresses age-dependent ectopic fat accumulation by Maintaining the proteostasis of PLIN2 in Drosophila. Dev. Cell, 43: 99–111.
19. Xie, G., H. Chen, D. Jia, Z. Shu, W. Palmer, X. Zeng, S. Hou, R. Jiao* and W.-M. Deng*, 2017. The SWI/SNF complex protein Snr1 is a tumor suppressor in Drosophila imaginal tissues. Cancer Res., 77: 862-873.
20. Peng, Q., Y. Wang, M. Li, D. Yuan, M. Xu, C. Li, Z. Gong, R. Jiao* and L. Liu*. 2016. cGMP-Dependent Protein Kinase Encoded by foraging Regulates Motor Axon Guidance in Drosophila by Suppressing Lola Function. J. Neurosci., 36: 4635 - 4646.
21. Zhang, H.#, C. Li#, H. Chen, H. Wu, W. Dui, F. Dai, W.-M. Deng* and R. Jiao*. 2015. SCFSlmb E3 ligase-mediated degradation of Expanded is inhibited by the Hippo pathway in Drosophila. Cell Res., 25: 93-109.
22. Xie, G., Z. Yu, D. Jia, R. Jiao* and W.-M. Deng*. 2014. E(y)1/TAF9 mediates the transcriptional output of Notch signaling in Drosophila. J. Cell Sci., 127: 3830 – 3839.
23. Yu, Z., H. Wu, H. Chen, R. Wang, X. Liang, J. Liu, C. Li, W.-M. Deng* and R. Jiao*. 2013. CAF-1 promotes Notch signaling through epigenetic control of target gene expression during Drosophila development. Development, 140: 3635-3644.
24. Yu, Z., M. Ren, Z. Wang, B. Zhang, Y.S. Rong, R. Jiao* and G. Gao*. 2013. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics, 195: 289-291.
25. Dui, W., B. Wei, F. He, W. Lu, C. Li, X. Liang, J. Ma* and R. Jiao*. 2013. The Drosophila F-box protein dSkp2 regulates cell proliferation through targeting Dacapo for degradation. Mol. Biol. Cell, 24: 1676-1687.